The University of British Columbia | Okanagan Campus

Integrated Rainwater Management Plan

Final Report | Part 2: Maintenance Manual

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

PREPARED FOR

UBC Okanagan Campus Planning and Development, Sustainability Office 1138 Alumni Avenue Kelowna, BC V1V 1V7

Attention: Leanne Bilodeau, Associate Director, Sustainability Operations T | 250.807.8938

PREPARED BY

Urban Systems Ltd. 304 - 1353 Ellis Street Kelowna, BC V1Y 1Z9 T | 250.762.2517

Glen Shkurhan, P.Eng.

. Hellewhan

Date Issued: July 2017 Project NO.: 1332.0327.01

This report was prepared by Urban Systems Ltd. for the account of the University of British Columbia. The material reflects Urban Systems Ltd.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Urban Systems Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

ACKNOWLEDGEMENT

The University respectfully acknowledges the traditions and customs of the Okanagan Nation and its people in whose territory the campus is situated. The Syilx (Okanagan) people have been here since time immemorial. In September 2005, the Okanagan Nation Alliance officially welcomed UBC to traditional Syilx (Okanagan Nation) territory in an official ceremony, Knaqs npi'lsmist, where UBC signed a Memorandum of Understanding with the Okanagan Nation.

As they have been stewards of this traditional territory since time immemorial, UBC works with the Okanagan Nation to ensure they are partners in the pursuit planning at the Okanagan Campus.

TABLE OF CONTENTS

UBC OKANAGAN CAMPUS INTEGRATED RAINWATER MANAGEMENT PLAN

1	INT	RODUCTION AND INTENT	1
2	RAII	NWATER FACILITIES AND COMPONENTS	4
	2.1	CONTRIBUTING DRAINAGE AREA	5
	2.2	PRE-TREATMENT FACILITIES	5
	2.3	BIOSWALE (RAIN GARDEN, BOX PLANTER, CURB	
		BULB, AND LINEAL VEGETATED SWALE)	6
	2.4	INFILTRATION SWALE / TRENCH	10
	2.5	RECHARGE BASIN	11
	2.6	CONSTRUCTED WETLAND	12
	2.7	DRYWELL	13
	2.8	STORM SEWERS AND CATCH BASINS	13
3	MA	INTENANCE PROCEDURES	14
	3.1.	VEGETATION MAINTENANCE AND EROSION	
		AND SEDIMENT CONTROL	15
	3.2.	LID FACILITY UNDERDRAIN AND CATCH BASIN	
		INSPECTION AND MAINTENANCE	18
	3.3.	CONTRIBUTING DRAINAGE AREA INSPECTION	
		AND MAINTENANCE	18
	3.4.	PRE-TREATMENT FACILITY INSPECTION AND	
		MAINTENANCE	20
	3.5	BIOSWALE, INFILTRATION SWALE AND RECHARGE	
		BASIN INSPECTION, MAINTENANCE AND	

22

TROUBLESHOOTING

3.6. CONSTRUCTED WETLAND INSPECTION AND	
MAINTENANCE	28
3.7. DRYWELL INSPECTION AND MAINTENANCE	30
3.8. STORM SEWER AND CATCH BASIN INSPECTION	
AND MAINTENANCE	30
3.9. WINTER MAINTENANCE	31
3.10.SUPPLEMENTAL GUIDANCE FOR EXISTING	
CAMPUS POND	32
3.11. EXISTING INFILTRATION DITCH ADJACENT TO	
LOT H INSPECTION AND MAINTENANCE	33
3.12. CONTAMINATED SOIL WARNING	34
3.13. ONGOING FACILITY SOIL AND WATER TESTING	34
3.14. PROPRIETARY TREATMENT SYSTEMS	34

4 PLANT MATERIAL SELECTION	35
----------------------------	----

CREDITS

LIST OF FIGURES

FIGURE 1	TYPICAL SOFT LANDSCAPE BIOSWALE CROSS SECTION WITH OVERFLOW INLET	7
FIGURE 2	TYPICAL BOX PLANTER CROSS SECTION WITH UNDERDRAIN AND OVERFLOW	
	INLET	8
FIGURE 3	TYPICAL BOX PLANTER ADJACENT TO BUILDING	8
FIGURE 4	TYPICAL CROSS SECTION OF INFILTRATION SWALE	10
FIGURE 5	INFILTRATION TRENCH; VARIATION WITHOUT UNDER-DRAIN OR SOD INVERT.	
	APPROPRIATE FOR AREAS OF HIGHER NATURAL INFILTRATION CAPACITY SUCH AS	
	INNOVATION PRECINCT.	11
FIGURE 6	TYPICAL PLAN LAYOUT FOR A RECHARGE BASIN	11
FIGURE 7	TYPICAL PLAN LAYOUT FOR A CONSTRUCTED WETLAND	12
FIGURE 8	TYPICAL CATCH BASIN	13
FIGURE 9	CATCH BASIN WITH FILTER	13

LIST OF TABLES

TABLE 3.1	VEGETATION MAINTENANCE AND EROSION AND SEDIMENT CONTROL	15
TABLE 3.2	LID FACILITY UNDERDRAIN AND CATCH BASIN MAINTENANCE	18
TABLE 3.3	CONTRIBUTING DRAINAGE AREA INSPECTION AND MAINTENANCE	19
TABLE 3.4	PRE-TREATMENT FACILITY INSPECTION AND MAINTENANCE	21
TABLE 3.5	BIOSWALE, INFILTRATION SWALE AND RECHARGE BASIN INSPECTION,	
	MAINTENANCE AND TROUBLESHOOTING	23
TABLE 3.6	CONSTRUCTED WETLAND INSPECTION AND MAINTENANCE	28
TABLE 3.9	WINTER INSPECTION AND MAINTENANCE	32
TABLE 3.10	EXISTING CAMPUS POND INSPECTION AND MAINTENANCE	32
TABLE 4.1	RECOMMENDED PLANT MATERIAL	36

INTRODUCTION AND INTENT

The purpose of this document is to outline current best management maintenance practices for the rainwater facilities identified in the UBCO Integrated Rainwater Management Plan (UBCO IRMP) as well as for the existing campus pond and infiltration ditch adjacent to Lot H.

The maintenance manual is divided into four sections as follows:

- 1. **Section 2.0 Facility Intent and Function** describes the proposed rainwater facility types and associated components identified as the most likely techniques to satisfy the IRMP strategy:
 - » Contributing Drainage Area
 - » Pre-Treatment Facility
 - » Bioswale and Bioswale Components
 - * Rain Gardens
 - * Vegetated Swales
 - * Curb Bulbs
 - * Box Planters
 - * Weirs
 - * Building Scuppers
 - » Infiltration Swale
 - » Recharge Basin
 - » Constructed Wetland
 - » Drywell
 - » Storm Sewers and Catch Basins
- 2. Section 3.0 Facility Maintenance identifies typical inspection points, triggers, activities and frequency of maintenance for the facilities and components identified within the UBCO IRMP:
 - » Vegetation Maintenance and Erosion and Sediment Control
 - » Bioswale Underdrain and catch basin
 - » Contributing Drainage Area
 - » Pre-Treatment Facility
 - » Bioswales, Infiltration Swale and Recharge Basin
 - » Constructed Wetland
 - » Drywell
 - » Storm Sewer and Catch Basin
 - » Vegetation and erosion and sediment control
 - » Winter maintenance and snow management

- » Existing Campus Pond Stormwater Retention Reservoir
- » Existing Infiltration Ditch Adjacent to Lot H
- » Contaminated Soil Warning
- » Ongoing Facility Soil and Water Testing
- 3. **Section 4.0 Roles and Responsibilities** defines UBC staff who are responsible for each area of Operations and Maintenance.
- 4. **Section 5.0 Plant Selection** discusses criteria for LID specific plant material selection and recommended plant lists.

This document is not intended to provide design or construction specifications, although some general comments and recommendations based on local experience and observations are noted in section 2.0 and a list of relevant design and construction reference documents is identified in **Appendix A**.

The best management practices contained within this manual have been distilled from numerous current published documents, academic field studies and consultation with recognized experts in this field, a selection of which are identified in **Appendix B.** Maintenance recommendations for the existing pond and infiltration ditch are guided by an environmental review prepared for the UBCO IRMP.

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

2 RAINWATER FACILITIES AND COMPONENTS

8 29-1

2.1 CONTRIBUTING DRAINAGE AREA

The contributing drainage area is defined as the area generating runoff which is conveyed via overland flow, channels and/or pipes to the LID facility. The condition of the contributing drainage area and resulting conveyance of undesirable materials downstream directly affects the function of LID facilities.

Ensuring contributing drainage areas are clear of extraordinary debris, grit, sediments and pollutants is the most efficient and effective means of minimizing maintenance frequency for, and maximizing the proper functioning of, LID facilities.

See **Section 3.3** for description of maintenance procedures for Contributing Drainage Areas.

2.2 PRE-TREATMENT FACILITIES

Pre-treatment facilities may be combined with all major rainwater facility types. They are designed to dissipate the energy of incoming runoff and detain the runoff for initial settling of coarse particulates and removal of other unwanted materials, such as trash and oil, prior to runoff discharging into the primary water quantity and quality control facility.

Pre-treatment facilities come in a variety of types, including:

- open basins, such as forebays
- manufactured structures, such as oil/grit separators
- grassed areas that promote sheet flow and reduce water velocity
- source controls, such as litter receptacles, street cleaning and choice of winter road de-icing products

Pre-treatment facilities are "primary treatment" systems only. Filtrationbased water quality facilities offer greater pollutant removal capabilities than manufactured structures and should be considered in meeting sustainability objectives

Similar to the contributing drainage area, proper maintenance of pre-treatment facilities are efficient and effective means of minimizing ongoing maintenance requirements for downstream LID facilities.

See **Section 3.4** for description of maintenance procedures for Pre-Treatment facilities.

RAINWATER MANAGEMENT Operation and Maintenance Manual

- 1 INTRODUCTION AND INTENT
- 2 RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Garbage and leaves in parking lot image: csufresno.edu

Construction activities image: City of Edmonton ISMP

Erosion control measures image: City of Edmonton ISMP

Concrete basin rain garden Forebay image: worldlandscapearchitecture.com

Concrete basin rain garden Forebay image: verassets.blob.core

Infiltration basin riprap Forebay image: uidaho.edu

Stormceptor oil and grit separator image: dnify.io - hanson-han-stormceptorcutawa

2.3 BIOSWALE (RAIN GARDEN, BOX PLANT-ER, CURB BULB, AND LINEAL VEGETATED SWALE)

Rain gardens, curb bulbs, box planters and lineal vegetated swales are all considered part of the bioswale family and are intended to have an aesthetic appeal as well as a rainwater management function. These facilities are designed to slow down, detain, infiltrate, facilitate evapotranspiration and treat runoff prior to entering another rainwater management facility. Bioswales are commonly constructed as a concave landscaped area where runoff from roofs or paving infiltrates into deep constructed soils and subsoils below. In urban environments bioswales are typically enclosed with hard landscape edges such as concrete or rectangular boulder curbs.

Design specifications such as engineered growing medium, depth of growing medium and requirements for underdrains are determined based on site specific engineering drawdown and water volume detention requirements and geotechnical investigation results pertaining to subsoil infiltration rates. Plant material is specified for its site specific aesthetic qualities, CPTED (Crime Prevention Through Environmental Design) requirements, Fire Smart requirements, ability to withstand drought and inundation conditions, and if receiving runoff from road and salted catchment areas its ability to withstand resulting soil chemistry conditions.

Within the arid Okanagan context, bioswales are characterized by densely planted drought and inundation tolerant vegetation for aesthetics and erosion control; a thick mulch layer for soil moisture retention; engineered growing medium designed for rapid drawdown to avoid ponding water and large pore spaces for water volume holding capacity; and overflow inlet and underdrains to convey excess rainwater to storm pipes, dry wells or other receiving facilities. Underdrains are particularly important for facilities implemented in close proximity to a steep slope (approximately 10 meters from top of bank) or if a series of 3 or more LID features are all in close proximity perpendicular to steep contours where seepage may accumulate downslope for one facility to the next. In these instances underdrains are important to prevent excess seepage accumulation that may result in oversaturated soil conditions, or slope instabilities.

Most bioswales in the Okanagan require an automatic drip irrigation systems to provide supplemental moisture to plants during their establishment period. Irrigation systems may be turned off after two or three seasons depending upon the type of plant material in the facility, but may be maintained for fire suppression purposes. UBCO is required to maintain a wildfire management plan which should also inform the planting selection and the need to maintain irrigation systems. UBCO aspires to reduce potable water use, particularly for uses that do not require potable work such as irrigation and maintaining water features. As such, planting schemes should first be selected to minimize irrigation demands. The WSIP speaks to UBCO considering using reclaimed water and rainwater reuse, both of which are complex and costly systems which extend beyond the scope of the IRMP.

Bioswale structures such as weirs are frequently required to slow and detain rainwater in areas of steep slopes such as are found on the UBCO campus. Ornamental roof leaders and sidewalk paving and grills are often incorporated with box planters adjacent to buildings. A brief description of these structures are described in 3. and 4. below.

The most common maintenance issues for bioswales within the Okanagan context are:

- erosion from high intensity rain storms
- erosion from steep design side slopes due to poor design coordination
- poor plant performance due to lack of adequate irrigation during establishment period and in drought conditions
- inundation by invasive weed species
- clogging of inlets with sediments and garbage from contributing drainage areas

See **Sections 3.1, 3.2, 3.4** and **3.5** for a complete description of maintenance procedures for bioswales.

FIGURE 1 TYPICAL SOFT LANDSCAPE BIOSWALE CROSS SECTION WITH OVERFLOW INLET

RAINWATER MANAGEMENT Operation and Maintenance Manual

- 1 INTRODUCTION AND INTENT
- 2 RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Street sweeper image: southwestsweepersales.com

image: City of Portland - Appendix G -Supplemental Drawings and Example Landscaping Plans, September 2004 Stormwater Management Manual

image: phillywatersheds.org

FIGURE 2 TYPICAL BOX PLANTER CROSS SECTION WITH UNDERDRAIN AND OVERFLOW INLET

image: City of Portland - Appendix G -Supplemental Drawings and Example Landscaping Plans, September 2004 Stormwater Management Manual

FIGURE 3 TYPICAL BOX PLANTER ADJACENT TO BUILDING

Bioswale Weir Structures

Weirs or check dams are components of many LID facilities and are employed on steep slopes to slow water to reduce erosion, facilitate sedimentation of suspended solids, and encourage infiltration and evapotranspiration of runoff. Weirs in bioswale facilities are commonly designed as functional artistic design features constructed of rectangular boulders or concrete and metal structures and facilitate the celebration of rainwater through the cascading water effect.

The most common cause of weir failure, and hence bioswale maintenance are:

- improper design for the site conditions and catchment area
- incorrect installation
- improper materials and poor workmanship

Bioswale Building Scuppers and Rainwater Channels

The integration of bioswales with building rainwater systems provides additional opportunities for the creative celebration of rainwater. Artistically designed scuppers and rainwater channels, while exhibiting their own inherent aesthetic, come alive during rain events as water cascades over outlets and through channels.

The most common maintenance issues attributable to the incorporation of building rainwater into bioswales are:

- additional deposition of debris from rooftop into bioswale
- debris clogging channels leading to Bioswale facility

RAINWATER MANAGEMENT Operation and Maintenance Manual

1 INTRODUCTION AND INTENT 2 RAINWATER FACILITIES AND COMPONENT **3** MAINTENANCE PROCEDURES 4 PLANT MATERIAL SELECTION Soft landscape Rain Garden *image: sissonlandscapes.com* Parking lot Rain Garden image: southsidegreen.com Urban streetscape Box Planter image: wordpress.com-sw12thst_photo Box Planter integrated with buildings Curb Bulb Rain Garden image: 'The Yards' Washington DC Lineal Vegetated Swale image: landscaperesource.comsolyndra_landscape_014

Boulder weir image: www.asla.org/Portland/site. aspx?id=43983-Oregon Convention Centre-C. Bruce Forster

Concrete and metal weir image: southwestsweepersales.com

Artistic scupper detail with fountain feature leading to rain garden

Channel leading from roof leader to rain garden image: University of British Columbia

Tiered rainwater channel on slope image: Park Killesberg -'Green Joint'-Rainer Schmidt Landschafts Architekten

image, right: City of Portland - Appendix G - Supplemental Drawings and Example Landscaping Plans, September 2004 Stormwater Management Manual

Shallow grassed Infiltration Swale in residential context image: City of Edmonton ISMP

2.4 INFILTRATION SWALE/TRENCH

Infiltration swales and trenches are shallow sloped grassed or vegetated channels designed to capture, detain and treat rainwater and convey larger flows. They accept surface flows from adjacent paved surfaces, hold the water behind weirs, and allows water to infiltrate into underlying soils. The swale and weir structures provide conveyance for larger storm events to the storm drain system. Variations on designs include an underlying drain rock reservoir, with or without a perforated underdrain. Despite infiltration, significant volumes of water may still evapotranspire and water which may still be released through an underdrain system is first filtered, improving water quality.

See **Section 3.5** for description of maintenance procedures for infiltration swales.

Permation

FIGURE 5 INFILTRATION TRENCH; VARIATION WITHOUT UNDER-DRAIN OR SOD INVERT. APPROPRIATE FOR AREAS OF HIGHER NATURAL INFILTRATION CAPACITY SUCH AS INNOVATION PRECINCT.

2.5 RECHARGE BASIN

A Recharge Basin is either a natural or artificially constructed depression that collect water for the recharge of an aquifer. Recharge basins temporarily store runoff, but release runoff by infiltrating the water into the ground. The recharge volume is stored and allowed to infiltrate into the underlying soils over a period of time following a storm event. In the case of UBCO, there is no off-site drainage infrastructure to accept discharge, therefore the recharge basin must be sized and maintained to fully contain 100% of the runoff generated.

Maintenance Considerations:

- Extreme care must be taken to ensure water quality of rainwater prior to entering facility to prevent risk of contaminating the aquifer
- Frequent monitoring, testing and maintenance required
- Excellent candidate for water quality monitoring Learning Lab

See **Section 3.5** for description of maintenance procedures for recharge basins.

FIGURE 6 TYPICAL PLAN LAYOUT FOR A RECHARGE BASIN

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

IMAGE 5

In the case of UBCO, an active overflow structure is not permitted. However, an emergency spillway should be included to a safe flow route downstream. Activation of this spillway would only occur in the event of a rainstorm beyond the 100 year design level, or system failure.

image: City of Portland -Appendix G - Supplemental Drawings and Example Landscaping Plans, September 2004 Stormwater Management Manual

Grass lined recharge basin

Required drought tolerance grass and sufficient precipitation to sustain it. The grass may serve as an additional filter, but retards flow to some degree and requires additional maintenance.

Constructed wetland image: Urban Systems Ltd.

2.6 CONSTRUCTED WETLAND

Constructed wetlands are a series of shallow ponds connected by an engineered marsh system designed to treat contaminated rainwater via sedimentation, contact with soils, and through the biological processes associated with emergent aquatic plants.

Wetlands are considered one of the most reliable forms of rainwater treatment, with excellent removal efficiencies. Wetlands require a large enough catchment area to sustain hydrology, however they can also be seasonal, which may be the case in the arid climate of the Okanagan. The existing Pond on campus is technically a wetland, as it sustains water year-round. However, a significant drop in Pond water level is reported during the hot summer, as much as a "couple feet". This same pattern can be expected for any new wetland created. Therefore, design should anticipate a significant drop in water level during drought periods. Also, any intentionally constructed wetland will require an impermeable liner, particularly if installed in the Innovation Precinct area where native soils are more permeable that the main campus.

See **Section 3.6** for description of maintenance procedures for constructed wetlands.

image, right: City of Portland - Appendix G - Supplemental Drawings and Example Landscaping Plans, September 2004 Stormwater Management Manual

FIGURE 7 TYPICAL PLAN LAYOUT FOR A CONSTRUCTED WETLAND

2.7 DRYWELL

Dry wells are underground structures used to infiltrate rainwater runoff into the subgrade or water table. Drywells are typically perforated precast structures or rock pits lined with a geotextile. There are currently drywells in used on campus; both in the upper campus where there are low permeable soils, and in the lower campus where there are high permeable. There are no reports to suggest they perform poorly, however their true performance is not currently known. Soil permeability on campus indicates that drywells are strongly appropriate for the Innovation Precinct, but should be applied with caution in the established main campus. Particularly if applied in the established main campus, site specific permeability testing should occur first to identify sizing and spacing requirements.

See Section 3.7 for maintenance procedures for drywells

2.8 STORM SEWERS AND CATCH BASINS

Storm sewers and catch basins are designed to accept and convey excess rainwater runoff from impervious surfaces such as paved streets, directly connected roof tops, foundation drains, parking lots, and sidewalks. They may also receive overflow from LID features.

Catch basins act as a first-line pretreatment for other treatment practices, such as retention basins, by capturing large sediments and street litter from urban runoff before it enters the storm drainage pipes. Some of the heavier sediment and small objects may settle in a catch basin sump.

The performance of catch basins at removing sediment and other pollutants depends on the design of the catch basin (for example, the size of the sump), and on routine maintenance to retain the storage available in the sump to capture sediment. Sediment is typically removed using vacuum trucks.

See **Section 3.8** for maintenance procedures for storm sewers and catch basins.

FIGURE 8 TYPICAL CATCH BASIN

FIGURE 9 CATCH BASIN WITH FILTER

RAINWATER MANAGEMENT Operation and Maintenance Manual

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Typical precast concrete drywel image: janewalshdesigngc.com

Typical precast concrete catch basin image: janewalshdesigngc.com

images: (left) Edenflo.ca, (right) spillsource. net

3 MAINTENANCE PROCEDURES

3.1. VEGETATION MAINTENANCE AND EROSION AND SEDIMENT CONTROL

Vegetative cover is vital for the successful operation of an LID facility. In addition to aesthetic and wildlife habitat values, established plant material provides erosion control, encourages deposition of sediments, may uptake pollutants and assists in water draw-down through evapotranspiration within the facility.

Procedures for maintaining vegetation within LID facilities do not vary greatly from standard practices. The primary differences are an increase in the frequency of maintenance required to ensure a continuous vegetative cover for erosion control, and restrictions on the use of fertilizers and pesticides to prevent water and soil contamination. Some projects will require more maintenance than others depending upon the type of facility and type of vegetation installed.

General vegetation maintenance activities are outlined in **Table 3.1** below.

MAINTENANCE ACTIVITY FREQUENCY OR TRIGGER • Water plant material and turf frequently and deeply Watering for the first 1 to 2 months following installation to aid in successful establishment After 1 to 2 months, put plant material on a reduced frequency, deep watering schedule, to encourage deep rooting • Bi-weekly monitoring will be required to ensure plant material is thriving and schedule watering as required • Water as required to maintain plant material in healthy condition The installation of an automatic irrigation system is recommended for establishment watering and possibly for future fire suppression. Fertilization Fertilizers directly impact downstream water bodies by contributing to eutrophication; therefore, fertilizer application should be avoided or an environmental approach to application should be taken Fertilization can cause facility contamination and increase nutrient levels within the soils, both of which negatively impact how the facility functions • If the use of a fertilizer is proposed, it must be approved prior to application. Fertilization should be done as needed through monitoring and inspection of

TABLE 3.1 VEGETATION MAINTENANCE AND EROSION AND SEDIMENT CONTROL

 Compost may be used to enhance vegetation within LID facilities but it should be selected and used with caution

soil conditions and plant health.

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

MAINTENANCE ACTIVITY	Frequency or Trigger
Replacement of dead or dying plant material	 Once plant material has had time to leaf out in the spring, determine percentage of dead or unhealthy material, remove this plant material from the facility, and replace with either the same species or with an approved substitution
	 When replacing plant material, take note if one species is being replaced more than others, a species substitute (subject to approval) may be required
	 It is beneficial to ensure that plant coverage percentage aligns with design to ensure the facility is functioning at optimal capacity (plant coverage percentage for each year that the facility is under maintenance, and when fully operational, will be specified at the design phase)
	 For facilities with a herbaceous/meadow planting design, line trim the area in early spring to achieve the objective of full coverage by herbaceous plants
	 Continually monitor plant material throughout the growing season (April to October)
Pruning	 Inspect and prune plant material semi-annually in the spring and fall to avoid unwanted disease
	 Refer to reference documents for acceptable times to prune certain species
Turf repair	 Immediately apply topsoil, erosion control fabric and seed or replacement sod to bare patches and eroded areas in turf to avoid additional erosion
	 Continually monitor turf throughout the growing season (April to October)
Treating pests and disease	 When disease or pests are identified, treatment shall be provided by a licensed applicator
	 Install wire mesh or plastic guards around trees to deter animals from stripping bark; install fence or barrier around shrubs, perennials or plugs as required
	 Monitor for pests and disease during regular maintenance activities. Treatment of pests on UBC Campuses should be in line with the Integrated Pest Management program. http://rms.ubc.ca/ environment/pollution-prevention/integrated-pest- management-2/
Tree stake adjustment	 Adjust and/or loosen stakes annually or as needed; stakes should not be left on the tree for more than three growing seasons
Weed control	 Remove weeds bi-monthly
	 Hand pick weeds from plant beds and turf areas
	• Weeds must be controlled as per municipal bylaws and provincial regulations
	 Herbicides are toxic to aquatic ecosystems and should not be used unless all other options have been implemented without success and subject to approvals

MAINTENANCE ACTIVITY	Frequency or Trigger		
Mowing	 Mow sod areas on a monthly basis during the growing season - naturalized seed areas shall only be mowed for weed control. The optimal height depends on species, however should be left as high as practical to promote healthy root growth and water retention. Push mowing within LID facility is preferred to avoid compaction 		
Removal of debris and	 Inspect facilities and remove all debris each spring 		
sediment	 Inspect the contributing drainage area on a bi-monthly basis for sources of sediment; if no debris or excess sediment is encountered within the first season (April to October), incorporate facilities into regular inspection and maintenance schedule 		
	 Inspect the facility on a bi-monthly basis to ensure debris and sediment are not causing blockages and rectify issues immediately 		
Erosion control	 Regularly inspect the points of drainage inlet. Rock liner is usually required to prevent scour. If significant concentrated flows are to occur, it is likely that a more extensive rock liner will be required along the invert of the facility. 		
	 During spring cleanup and after all major storm events, inspect plant beds and turf areas for rill and gullies and repair immediately 		
	 Significant drilling should be investigated further to determine the cause(s) and develop mitigation efforts 		
	 Repairs may include topsoil, erosion control fabric, sod, seed, mulch and plant material 		
Mulch top up	 Annually (or as needed) check mulched areas for bare patches and top up to approved depth where needed (this can be coordinated with spring cleanup activities) 		

3.2. LID FACILITY UNDERDRAIN AND CATCH BASIN INSPECTION AND MAINTENANCE

Maintenance recommendations for LID facility underdrains and catch basins are included in **Table 3.2** on the following page.

1	INTRO	DUCTION	AND	NTENT
	THE LEG	DOCTION		

- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

TABLE 3.2 LID FACILITY UNDERDRAIN AND CATCH BASIN MAINTENANCE

MAINTENANCE ACTIVITY FREQUENCY OR TRIGGER

Removal of debris and sediment	•	Once operational, inspect all underdrains and catch basins on a monthly basis for the first year (or following a significant storm event) to ensure facility is performing as anticipated. Inspect semi-annually after the first year, or as required based on first year observations.
	•	If debris or excess sediment is noted, remove sediment and/or flush system as needed and inspect both the facility and contributing drainage area to determine source of sediment and take corrective action
	•	If no debris or excess sediment is encountered within the first season (April to October), incorporate facilities into regular inspection and maintenance schedule
	•	Check all access points to underdrain (e.g. pipe caps, catch basin and drain covers) to ensure they are secure and accessible

3.3.

CONTRIBUTING DRAINAGE AREA INSPECTION AND MAINTENANCE

Maintenance of contributing drainage areas is typically only required when downstream LID facilities are negatively impacted. The following table indicates triggers for maintenance and maintenance activities and frequency.

TABLE 3.3 CONTRIBUTING DRAINAGE AREA INSPECTION AND MAINTENANCE

Түре	ISSUE	MAINTENANCE ACTIVITY	Frequency
DISTURBED LANDSCAPE (construction, erosion)	Sediment from disturbed landscape migrating into LID facility.	 Ensure all erosion control measures are in place and functioning as intended 	 Daily During all rain and wind storm events
	Construction processes are the largest risk to established LID facilities. A construction sediment control plan should be a requirement for all future projects.	 clean out build-up of sediments at erosion control measures 	

Түре	ISSUE	MAINTENANCE ACTIVITY	FREQUENCY
SOFT LANDSCAPE (sod, shrub beds)	Debris from landscape migrating into LID facility	 Inspect for erosion; install erosion control measures and repair immediately Remove grass clippings, leaves, prune branches 	Quarterly
		 Mow/line trim and rake embankments to remove vegetation from annual/ perennial plants 	• Bi-annually
HARD SURFACE (roads, parking lots, sidewalks)	Garbage from hard surfaces migrating into LID facility	 Remove trash and debris Empty nearby trash cans Assess need and add additional trash cans Implement public education program 	• Quarterly
	Pollutants from motorized vehicles such as petroleum products (e.g. oils) and heavy metals (e.g. copper) migrating into LID facility	Vacuum type street sweeping	 Frequently Between Rainfalls Prior to Storm Sewer Cleaning
	Winter grit from hard surfaces migrating into LID facility	 Street and sidewalk sweeping 	 Immediately After Each Snow Melt
	Winter de-icing salts and sands damaging plant material in LID facility	 Reduce salt and sand use and promote alternatives, such as beet juice currently being applied. Do not use fertilizers as a substitute Do not use LID features for snow storage. Prepare a plowing and snow storage strategy that protects LID features. 	• Annually in winter
	Fertilizers negatively impacting water quality in LID facility	 Reduce fertilizer use and promote alternatives 	

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

3.4. PRE-TREATMENT FACILITY INSPECTION AND MAINTENANCE

All pre-treatment facilities require regular maintenance to prevent damage to the main LID facility downstream. The type and frequency of maintenance is dependent upon the function of the pre-treatment facility and the character of the surrounding drainage area.

The installation of a staff gage or other measuring device to indicate depth of sediment accumulation and level at which clean-out is required is recommended.

Түре	ISSUE	MAINTENANCE ACTIVITY	FREQUENCY
SOD FILTER STRIP		 Removal of sediment/grit at pavement edge Rake out sediment/ grit from sod filter strip if it has accumulated 	 As-needed based on visual inspection
	image: City of Edmonton ISMP	 Design should provide a small drop from the pavement edge onto the grass or rock lined inlet point. A common problem is that grass and sediment build up over time prevents water from entering easily, therefore causing ponding on the pavement surface. 	
HARDSCAPE FOREBAY	image: City of Edmonton ISMP	 Sweeping or removal with shovel 	 Annually Inspect After Spring Melt and Major Storm Events

TABLE 3.4 PRE-TREATMENT FACILITY INSPECTION AND MAINTENANCE

Rainwater Management Operation and Maintenance Manual

Түре	ISSUE	MAINTENANCE ACTIVITY	Frequency
CATCHBASIN SUMP	image: City of Edmonton ISMP	 Vac-truck suction 	 Annually Inspect After Spring Melt and Major Storm Events
GRAVEL DIAPHRAGM	image: City of Edmonton ISMP	 Remove grit and weeds Periodic replacement 	 Annually Inspect after spring melt and major storm events
SPLASH PAD (note: prevents erosion but not sedimentation)	image: 5counties.org - handbook_04raingarden_inlet	 Raking or sweeping 	 Annually Inspect after spring melt and major storm events
OIL AND GRIT SEPARATOR (OGS)	image: City of Edmonton ISMP	 Vac-truck flushing and suction 	 Annually Inspect after spring melt and major storm events
PRE- TREATMENT CHAMBER	image: City of Edmonton ISMP	 Vac-truck flushing and suction 	 Annually Inspect after spring melt and major storm events

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

3.5. BIOSWALE, INFILTRATION SWALE AND RECHARGE BASIN INSPECTION, MAINTENANCE AND TROUBLESHOOTING

Most vegetated LID facilities should require minimal maintenance once established, other than the maintenance activities outlined above in sections 3.1 Vegetation Maintenance and Erosion and Sediment Control, 3.2 LID Facility Underdrain and Catch Basin Inspection and Maintenance, and 3.4 Pre-Treatment Facility Inspection and Maintenance.

However, when maintenance issues do arise, bioswales, infiltration swales and recharge basins share common maintenance problems. The following table provides guidance on inspection activities, potential maintenance actions, and inspection frequency for each inspection point within these LID facilities. Where facility specific maintenance requirements exist they are noted in the table.

Түре	ISSUE	MAINTENANCE ACTIVITY	Frequency
INLET	Flow bypassing inlet (evidenced by sediment and debris deposits and dehydrated plant material)	 Correct inlet flow capture by re-grading, lowering inlet, re-shaping inlet or replacing inlet 	 Semi- Annually After Major Storm Event
	Trash and debris blocking inlet to facility	 Remove debris Evaluate contributing drainage area for sources of debris that can be reduced Evaluate if additional pre- treatment is required 	 Semi- Annually After Spring Melt After Major Storm Event
	Erosion at inlet	 Assess inlet design; flows may need to be redistributed or slowed and inlet protection may need to be increased Potentially, regrade inlet, install flow spreaders and/or addition inlet protection Stabilize with fabric, matting, stone or other material Re- distribute and top up mulch or soil media 	 Semi- Annually After Major Storm Event

TABLE 3.5 BIOSWALE, INFILTRATION SWALE AND RECHARGE BASIN INSPECTION, MAINTENANCE AND TROUBLESHOOTING

Туре	ISSUE	MAINTENANCE ACTIVITY	FREQUENCY
	Structural damage to inlet	 Determine source of damage (e.g. Age, snow clearing, vandalism) Assess function of site during rain event conditions Repair structural damage 	 Annually
SIDE SLOPE	Confirm if facility size has changed	 Estimate percentage of deviation in surface area Note if facility is smaller or larger Identify cause of change (e.g. Plant growth or death, sod migration, erosion, sedimentation) Re-design facility perimeter, if function and/or facility health is greatly impacted 	 Annually
SIDE SLOPE	Side slope erosion	 Evaluate if erosion caused by water flowing from top of slope, or seepage out of the slope. Assess gradient of side slopes Consider re-design options to lower side slope gradient and/ or increase erosion protection to slow flows Stabilize with fabric, matting, stone or other material as instructed by inspector Re-grade side slopes; install flow spreaders and/or addition erosion protection Re-distribute and top up mulch or soil media 	• Annually
	Damage to facility enclosure	Determine cause of damage to enclosureRepair enclosure	 Annually
BED AND VEGETATED ZONE	Growing medium texture is high in clay and slow to drain when wet	 Send soil sample for composition test Perform infiltration test Remove and replace soil 	 Annually

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Түре	ISSUE	MAINTENANCE ACTIVITY	Frequency
BED AND VEGETATED ZONE	Trash and debris have negatively impacted facility function and decreased aesthetic	 Remove debris Evaluate contributing drainage area for sources of debris that can be reduced Evaluate if additional pre- treatment is required 	• Quarterly
BED AND VEGETATED ZONE	Severe erosion in bed zone; concentrated flows evident by deep gully formation and/or sinking occurring	 Assess bed for preferential flow path Consider if facility and/or inlet are adequately sized for storm events Provide ornamental rock liner along preferential flow path Install check dams Consider underdrain malfunction or animal activity as source of sinking Re-distribute and top up mulch or soil media 	• Semi- annually
	Sediment accumulation and caking is reducing facility infiltration	 Evaluate contributing drainage area for sources of debris that can be reduced Assess pre-treatment functionality and capacity Clean out pre-treatment device Remove and replace top 150 mm of growing medium 	• Semi- annually

Түре	ISSUE	MAINTENANCE ACTIVITY	FREQUENCY
BED AND VEGETATED ZONE	Structural damage to weirs evidenced by flows deviating from design, non-distributed storage and or facility flooding, dehydrated vegetation or severe downstream erosion due to higher than expected flows	 Evaluate cause of structural damage Evaluate cause of flow deviation (weir size or shape) Repair structural damage or replace structure if deteriorated beyond repair; re-establish proper weir size and shape Repair any erosion caused by faulty structure Monitor in future inspections 	 Annually After Major Storm Event
	Riprap dislodged or unstable	 Evaluate riprap design for effectiveness (riprap coverage, rock size, rock placement, slope) Evaluate contributing drainage area to ensure facility is receiving design flow - re-grade area if required Evaluate effectiveness of riprap and the need for a new BMP type for erosion protection Repair erosion, remove soil accumulation, replace dislodged rocks, or stabilize unstable sections 	 Annually After Major Storm Event
	Mulch too thick or too thin	 Investigate reason for mulch discrepancy (e.g., Staff not familiar with standard practice, facility undersized for storm events) and rectify Top up or remove mulch to specified depth and 100% coverage 	 Semi- annually

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Туре	ISSUE	MAINTENANCE ACTIVITY	Frequency
BED AND VEGETATED ZONE	Plant material showing signs of dehydration or disease	 Assess planting to ensure species are appropriate for facility Assess facility and ensure plant species are receiving the intended amount of water and sunlight; test amended soil media Create a new planting plan according to assessment; remove existing species and replant 	• Semi- annually
	Plant material density and coverage low	 Assess planting to ensure species are appropriate for facility and disease free Assess for signs of dehydration Assess facility and ensure plant species are receiving the intended amount of water and sunlight; test amended soil media Treat diseased plants, if necessary Water where needed Fill in bare areas with recommended plant material Reseed bare patches of turf Create a new planting plan according to assessment; remove existing species and replant 	• Annually
	Plant material has taken over facility OR facility is bare	 Plant bare areas OR replace aggressive species with something more suitable for the location 	 Semi- annually
	Invasive weed species present	 Evaluate surrounding area for source of weed aggression and remove Increase weeding frequency 	Quarterly

Rainwater Management Operation and Maintenance Manual

Туре	Issue	MAINTENANCE ACTIVITY	FREQUENCY
OUTLET AND UNDERDRAIN	Underdrains and pipe outlet blocked, has sagged or is damaged and requiring repair	 Flush pipe and/or remove debris Investigate cause of obstruction or damage Replace pipe if required 	Annually
	Outlet is blocked and flow cannot enter	 Investigate cause of accumulation, such as maintenance frequency or frequent mulch application Clear debris 	 Semi- annually After Major Storm Event
	Outlet is not visible	 Consult original design drawings Hand excavate to locate and expose outlet. Modify or replace outlet to prevent future occurrences. 	Annually
FACILITY PERFORMANCE	Confirm size and shape of facility matches the design	 Investigate cause of any discrepancy Consult design team to ensure facility function is not compromise Adjust as required in the field 	Annually
	Flow bypasses inlet	 Determine cause of bypass Re-grade drainage path and/or install new inlet structure 	Annually
	Flow distribution within facility not even	 Determine cause for preferential path Remove mulch, re-grade drainage path and replace mulch Install baffles or weirs to redirect water 	 Semi- annually After Major Storm Event

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Түре	ISSUE	MAINTENANCE ACTIVITY	Frequency
FACILITY PERFORMANCE	Ponding depth greater than design grades	 Determine cause of discrepancy (such as mulch depth, amended soil settlement, poor grading) Check position of overflow and adjust accordingly Correct facility depth based on cause of discrepancy 	 Semi- annually After Major Storm Event
	Facility-wide ponding exceeding design drawdown time	 Increase inspection frequency Evaluate actual facility ponding depth versus original design Take soil sample and test for soil structure Perform infiltration test Adjust mulch or growing medium as required Cctv underdrain Pump out facility underdrain Add an underdrain if one does not evict 	 Semi- annually After Major Storm Event

3.6.

CONSTRUCTED WETLAND INSPECTION AND MAINTENANCE

This section applies to UBCO's existing pond and any future wetland.

TABLE 3.6 CONSTRUCTED WETLAND INSPECTION AND MAINTENANCE

Component	MAINTENANCE ACTIVITY	Frequency
INLET	 Inspect and remove debris and garbage from inlet Check around inlet for erosion and repair 	 Monthly Inspect after storm events

Component	MAINTENANCE ACTIVITY	FREQUENCY
FOREBAY (If applicable)	 Check the Forebay for accumulated sediment Dredge or vacuum forebay if sediment fills over 50% of design volume Test sediments for contaminants (e.g. Heavy metals) prior to removal Inspect for wildlife and conduct salvage in accordance with Provincial and Federal regulations prior to cleaning. Dispose of sediment to landfill or similar suitable for contaminant levels 	 Every 2-5 years Inspect annually and after storm events
CONTROL STRUCTURES	 Inspect outflow pipes for leaking joints or erosion and repair Inspect anti-seep collars for repair or replacement Inspect outfall and water discharge areas for erosion and repair Inspect and confirm energy dissipaters are adequate 	 Bi-Annually Inspect after storm events
	 Inspect control structures, weirs, orifices, outfall pipes for leaks and blockages – repair leaks and remove sediments and debris to avoid local flooding and maintain flows 	 Monthly Inspect after storm events
VALVES AND PUMPS (If applicable)	 Inspect valves and pumps and confirm are operating properly; repair if required Perform required maintenance 	 Annually
EMERGENCY OVERFLOW OR SPILLWAY	 Inspect overflow path and remove any blockages Inspect flow path for erosion and repair Inspect structural components and repair immediately to avoid catastrophic failure 	 Monthly Inspect after storm events
SIDE SLOPE	 Inspect banks for erosion, sloughing and seepage; stabilize bank as required 	 Monthly Inspect after storm events
MAIN WATER BODY	 Remove floating debris from pond Inspect for algal blooms as indicators of low oxygen or high nutrient loads; test water quality and take measures to correct Remove vegetation only as absolutely required if choking out habitat of Western Painted Turtle. Removal will require environmental permits and prior salvage of Western Painted Turtle. 	 Monthly Inspect after storm events

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Component	MAINTENANCE ACTIVITY	FREQUENCY
WILDLIFE	 Monitor for mosquito larvae and take approved measures to control Control pest species Remove dead animals to prevent spread of disease 	 Monthly
BED AND VEGETATED ZONE	 Inspect for exotic or invasive plants and remove manually 	 Monthly during growing season
	 Mow grass 	 Bi-Annually in spring and fall

3.7. DRYWELL INSPECTION AND MAINTENANCE

Drywells should be visually inspected twice a year and vacuumed out if noticeable accumulation of debris and sediment. At least one inspection should occur during a significant rainfall to observe water level performance. If performance is poor then cleaning may be warranted. Primarily it will be vacuumed, but it may also require some assistance with very gentle power washing in combination with vacuuming. Great care is required to ensure that only materials within the sump and its openings are removed, and not the subgrade material outside of the drywell.

3.8.

STORM SEWER AND CATCH BASIN INSPECTION AND MAINTENANCE

Storm sewers should require very little maintenance. Maintenance requirements are highly determined by the slope of the pipe and whether or not cleansing velocity is achieved. Pipes under about 0.2% grade may be susceptible to sediment build up or blockage.

It is recommended that a comprehensive CCTV inspect of the campus system be undertaken to establish a benchmark understanding of condition and issues. If deficiencies are noted, they should be addressed. If sedimentation is observed then these pipes will require an inspection and cleaning program. Generally, however, unless significant issues are observed, CCTV and cleaning should not be required with frequency less than 5 years.

Catch basins should be inspected twice a year and their sumps vacuumed as required on an annual basins.

Given that many of the manholes are not benched, a baseline assessment of manhole conditions should be done as part of the CCTV inspection program noted above. If any signs of scour are noted, concrete benching should be applied. Otherwise, the inspection and maintenance program is the same as for storm sewers described above.

3.9. WINTER MAINTENANCE

Snow storage and de-icing are key considerations in maintaining facility integrity. Snow should never be stored in or on LID facilities due to the potential presence of salt or fines from gravel. Fines may clog the pores within the growing medium and subgrade and impede infiltration. Residual chlorides from salt are detrimental to most plantings. If areas adjacent to a facility require the use of a de-icer, remove snow promptly and use a de-icer application with low chloride concentration.

TABLE 3.9 WINTER INSPECTION AND MAINTENANCE

ISSUE	MAINTENANCE ACTIVITY	INSPECTION Frequency
Snow is being stored on facility	 Evaluate alternate snow storage locations with snow removal crew Remove snow from facility if alternate location is available and removal will not damage facility 	 After first snow plough Monthly in winter months
Flow route to facility is blocked by snow and ice	 Create flow path to facility inlet 	 Prior to and during spring melt

3.10. SUPPLEMENTAL GUIDANCE FOR EXISTING CAMPUS POND

The UBCO IRMP recommends that no, or limited, maintenance activities should be undertaken within the main cell of the existing campus pond due to the presence of the Western Painted Turtle and the impact maintenance has on it and its habitat. It is, however, recommended and necessary that the pre-treatment forebay be maintained regularly. This recommendation is to create a balance between the need to maintain the systems utility function, while at the same time minimizing impact and costs associated with protecting the habitat and resident Western Painted Turtle. If the forebay is properly maintained and efforts are taken to reduce the use of fertilizers in the upstream catchment, maintenance of the main pond cell should diminish. Although bull rushes have taken hold in the main RAINWATER MANAGEMENT Operation and Maintenance Manual

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

pond cell, they may be difficult to prevent and they do not substantially reduce the live storage volume of the pond, as they will generally remain below the normal water level. However, literature¹ indicates that mowing cattails after the heads are well formed, but not mature, and then following up with another mowing about a month later, when new growth is two or three feet high, will kill at least 75% of the plants. It the case of UBCO, the challenge will be in obtaining sufficient reach. It is presumed that a long reach boom of some kind will be required; either a boom lift to provide elevated human access, or a mechanical boom with a cutting implement of same kind, like would be used in the forest industry. This is based on the assumption that the pond is too deep to permit wading.

The earth berm separating the forebay from the main pond cell currently exhibits erosion do to its steep slopes. This issue is exacerbated during maintenance activities. It is recommended that UBCO consider flattening the bank slopes and apply bio-engineering solutions (live plantings) and / or coarse rock at these slopes to help stabilize these banks. Also, if it is observed during a heavy rainfall event that this berm is overtopped by flood waters, refinishing of the entire berm surface should be considered to reduce erosion, or the berm raised to not overtop.

INSPECTION POINT	ISSUE	MAINTENANCE ACTIVITY	Frequency
FOREBAY	Sedimentation of Pond	 Check the Forebay for accumulated sediment 	 Likely every 2-5 years
		 Dredge Forebay if sediment fills 50% of design volume or shows signs of blocking culverts leading into main pond cell 	 Inspect after spring melt and major storm events
		 Ensure culverts connecting forebay to main pond are clear of debris and sediment 	
		 Test sediments for contaminants (e.g. heavy metals) prior to dredging 	
		 Dispose of sediment to landfill or similar suitable for contaminant levels 	

TABLE 3.10 EXISTING CAMPUS POND INSPECTION AND MAINTENANCE

¹ US Department of Agriculture / National Resources Conservation Service – Broad Leafed Cattail, Plant Guide, 2006

INSPECTION POINT	ISSUE	MAINTENANCE ACTIVITY	Frequency
SIDE SLOPES V AND TOP OF rd BANK d tu	Vegetation, roots and stones discouraging turtles from reaching upland	 Remove vegetation along routes to potential nesting sites. (based on a comprehensive habitat review by a qualified biologist specializing in Western Painted Turtles) 	• Bi-annually
nesting sites(as recommended in the IRMP, a dedicated turtle inventory and assessment is recommended to map out habitat)		 Remove roots and stones from nesting sites 	• Annually
BED AND VEGETATED ZONE	Non-native invasive plant species impacting	 Weed out invasive species on accessible banks and surrounding area by hand 	 Inspect and remove weekly
	native species	 Attempt mowing of cattails as discussed above this table 	 Frequency unknown, but likely every 2 to 5 years.
		 Re-plant native species on banks and surrounding area as required 	 Bi-annually in spring and fall

3.11. EXISTING INFILTRATION DITCH ADJACENT TO LOT H INSPECTION AND MAINTENANCE

The UBCO IRMP recommends near term measures be taken to stabilize current bank erosion, however that ongoing maintenance be minimized so as to not impact to the Great Basin Spadefoot Toad habitat. The proposed overflow to a centralized wetland and recharge basin will also reduce the risk associated with this facility.

It is recommended that the snow management program be adjusted to not use this ditch for snow storage. In addition, it would be preferential for UBC to street sweep / vacuum the parking lot semi-annually to reduce the loading of sediment into the ditch.

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Please note that any work in and around the pond will require environmental applications and permits and must be overseen by a qualified environmental monitor.

3.12. CONTAMINATED SOIL WARNING

LID facilities are designed to treat rainwater runoff and contaminants will collect in facility soils and pre-treatment sediment basins. All material removed from these sites should be tested for contaminants and disposed of appropriately.

3.13. ONGOING FACILITY SOIL AND WATER TESTING

Water exiting the LID facilities should ideally be tested annually for contaminant levels of heavy metals, petroleum hydrocarbons, pH and nutrients such as nitrogen. Testing will not only provide useful baseline data on the efficacy of the facility itself, but will also help to refine maintenance requirements and lifecycle costing estimates. Testing will also assist in determining when growing medium within the facility requires removal and replacement. It will also validate performance objectives and allow for adaptive management and design decisions.

Monitoring programs for the existing pond and future wetland / recharge basin in Innovation Precinct are described in the IRMP.

3.14 PROPRIETARY TREATMENT SYSTEMS

If engineered proprietary treatment systems are selected (Oil and Grit separators, or filtration type systems), operation and maintenance manuals should be provided by the supplier, therefore are not contained herein.

Please note that any work in and around this ditch will require environmental applications and permits and must be overseen by a qualified environmental monitor.

4 PLANT MATERIAL SELECTION

300

Table 4.1 lists plant material commonly used in LID facilities within the Okanagan. The table is not intended to be an exclusive list; new varieties are continually being created and tested for suitability. Plants that have proved to be problematic are noted at the bottom of the table.

Scientific Name	Common Name	Soil Mois- ture W = Wet M = Moist D = Dry	Salt Tolerance High/ Medium/ Low	Notes
Nurse Crop				
Lolium multiflorum	Annual Ryegrass	Variable	Η	Nurse crop for slope stabilization
Ornamental Grass	ses			
Andropogon gerardii	Big Bluestem	W-M	Μ	Sod forming – for use in contained box planters or naturalized areas
Calamagrostis acutiflora	Karl Foerster Feather Reed Grass	M-D	Μ	Clump forming – will not become invasive
Carex ssp.	Sedge (many varieties)	W-M	M-L	Many varieties available; both sod and clump forming
Deschampsia cespitosa	Tufted Hairgrass	D	M-H	Clump forming
Helictotrichon sempervirens	Blue Oat Grass	Μ	Μ	Clump forming
Pennisetum hameln	Fountain Grass	M-D	Η	Clump forming
Schizachyrium scoparium	Little Bluestem	D	M-H	Clump forming; does not perform well in rich soils or with irrigation
Scirpus ssp.	Bulrush species	W	Μ	Low drought tolerance; aggressive spreader
Typha latifolia	Broadleaf Cattail	W	M-H	Low drought tolerance; aggressive spreader; efficient at pollutant uptake

TABLE 4.1 RECOMMENDED PLANT MATERIAL

Scientific Name	Common Name	Soil Mois- ture W = Wet M = Moist D = Dry	Salt Tolerance High/ Medium/ Low	Notes
Broadleaf Perennia	ls			
Achillea millefolium	Common Yarrow	Μ	Μ	Okanagan native
Artemisia frigida	Pasture Sage	D	L	Okanagan native
Artemisia schmidtiana 'Silver Mound'	Silver Mound Artemesia	M-D	Н	Ornamental planting
Coreopsis Ianceolata	Lance-leaf Coreopsis	M-D	Н	Ornamental planting
Coreopsis rosea	Pink Flowered Tickseed	Μ	Μ	Ornamental planting
Echinacea purpura	Purple Coneflower	M-MD	Μ	Attracts bees and butterflies
Gaillardia aristata	Brow Eyed Susan	D	Μ	Okanagan native; self- seeds
Heterotheca villosa	Golden Aster	D	Х	Okanagan native; self- seeds
Hosta ssp.	Hosta (many varieties)	Variable	Μ	Many varieties available; range in moisture requirements
Iris versicolor	Blue Flag Iris	W	Μ	Low drought tolerance, slow spreader
Lavandula x intermedia Grosso	Grosso Lavender	D	Μ	Ornamental; attracts bees due to presence of lavender researchers on campus, lavender species is a "living lab" opportunity.
Lavandula angustifolia 'Hidcote'	Hidcote Lavender	D	Μ	Ornamental; attracts bees
Leucanthemum	Shasta Daisy	M-D	Μ	Drought tolerant

- 1 INTRODUCTION AND INTENT
- RAINWATER FACILITIES AND COMPONENT
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Scientific Name	Common Name	Soil Mois- ture W = Wet M = Moist D = Dry	Salt Tolerance High/ Medium/ Low	Notes
Perovskia atriplicifolia 'Little Spire'	Dwarf Russian sage 'Little Spire'	D	Μ	Drought tolerant; does not do well with excessive moisture; attracts bees
Rudbeckia ssp.	Coneflower (many varieties)	W-M	M-H	Many varieties available; attractive to bees, some self- sow, some very drought tolerant
Sedum ssp.	Sedum (many varieties)	D	Μ	Literature recommends only for use on green roofs due to potential to become invasive elsewhere
Stachys byzantina	Lamb's Ear	D	Μ	Literature recommends only for use on green roofs due to potential to become invasive elsewhere
Symphyotrichum ssp.	Aster (many varieties)	M-D	M-H	Many varieties available; tolerant of wide range of soil and moisture conditions.
Shrubs				
Amelanchier alnifolia	Saskatoon	M-D	Μ	Okanagan native; edible
Arctostaphylos uva-ursi	Bearberry	M-D	M-H	Native to the Okanagan
Cornus sericea ssp. sericea	Red-Osier Dogwood	W-M	L	Native to the Okanagan
Ericameria nauseosa	Rabbitbrush	D	Μ	Native to the Okanagan
Juniperus communus	Common Juniper	D	Η	Suitable for rocky sites

Scientific Name	Common Name	Soil Mois- ture W = Wet M = Moist D = Dry	Salt Tolerance High/ Medium/ Low	Notes	
Juniperus horizontalis	Creeping Juniper	D	Н	Suitable for rocky sites	
Mahonia aquifolium	Oregon Grape Holly	D	L	Okanagan native; wildlife food	
Potentilla fruticosa	Shrubby Cinquefoil	Μ	Μ	Okanagan native; attracts bees	
Ribes cereum	Squaw Currant	D	L	Okanagan native; attracts bees	
Rosa 'Nearly Wild'	Nearly Wild Rose	Μ	L	Hardy; attracts bees	
Rosa woodsii 'Kimberley'	Kimberley Wild Rose	Μ	L	Okanagan native; wildlife food	
Sambucus caerulea	Blue Elderberry	Μ	L	Okanagan native; very large shrub/ small tree	
Trees					
Acer saccharinum	Silver Maple	W-M	L-M	Tolerant of periodic short term inundation	
Larix laricina	Tamarack / American Larch	W-D	Н	Tolerant of periodic short term inundation	
Populus tremuloides	Trembling Aspen	Μ	M-H	Tolerant of periodic or short term inundation	
Turf Grass					
Festuca ssp.	Festuca species	M-D	M-H	Low growing fine textured sod requiring mowing not more than once per month.	
Problematic Species in the Okanagan					
Festuca glauca 'Elijah Blue'	Elijah Blue Fescue	Short lived; requires replacement every 2-3 years			
Festuca idahoensis	ldaho Festuca	Short lived; requires replacement every 2-3 vears			

- 1 INTRODUCTION AND INTENT
- Rainwater Facilities and Component
- **3** MAINTENANCE PROCEDURES
- 4 PLANT MATERIAL SELECTION

Scientific Name	Common Name	Soil Mois- ture W = Wet M = Moist D = Dry	Salt Tolerance High/ Medium/ Low	Νοτες
Leymus arenaris	Blue Lyme Grass	Extremely invasive and out-competes most other plant material; use only in completely sealed containers		
Yucca	Yucca	Difficult to remove due to rhizomes		
Typha latifolia	Broadleaf Cattail	Aggressive spreader; excavate deep zones (1.0m / 3.5') in ponds to deter growth		
Ericameria nauseosa	Rabbitbrush	Great plant but does not tolerate over watering – roots rot and plants die – do not use in irrigated areas		

APPENDIX A

Appendix A - Landscape Design Reference Documents

- UBC Landscape Design Guidelines (pending)
- UBCO Landscape Maintenance Program (January 2014)
- UBCO Okanagan Design Guidelines http://planning.ubc.ca/sites/planning.ubc.ca/files/documents/planningservices/policies-plans/UBCODesignGuidelinesRev08.pdf
- UBCO Wildland Fire Management Plan http://planning.ubc.ca/sites/planning.ubc.ca/files/documents/planningservices/policies-plans/UBCO%20Wildland%20Fire%20Mngt%20 Plan%20Final%20July%2028.pdf
- UBCO Landscape Maintenance Recommendations (Okanagan Xeriscape Association)

http://okanaganxeriscape.org/

- City of Kelowna Bylaw 7900 Schedule 5 Supplemental Specifications http://apps.kelowna.ca/CityPage/Docs/PDFs/Bylaws/Subdivision,%20 Development%20and%20Servicing%20Bylaw%20No.%207900/ Schedule%205%20-%20Construction%20Standards.pdf
- City of Kelowna Bylaw 7900 Schedule 5 Supplemental Standard Drawings http://apps.kelowna.ca/CityPage/Docs/
 PDFs/%5CBylaws%5CSubdivision%2C%20Development%20and%20
 Servicing%20Bylaw%20No.%207900/Schedule%205%20-%20
 Drawings%20-%20Part%206B%20-%20Landscaping.pdf?t=054721642
- Master Municipal Construction Documents (MMCD) (current edition) https://www.mmcd.net/
- British Columbia Landscape Standard (current edition) http://bcsla.org/initiatives/bcsla-publications-2
- APPA Standards (current edition) https://appa.org/bookstore/index.cfm

APPENDIX B

APPENDIX B – LID MAINTENANCE BEST MANAGEMENT PRACTICES RESEARCH

Center for Watershed Protection Inc. (2012). West Virginia Stormwater Management and Design Guidance Manual. Virginia.

Chesapeak Stormwater Network. (2011). *Appendix E Landscaping Version 1.0.* Retrieved from: http://www.vwrrc.vt.edu/swc/documents/2013/DEQ%20 Introduction_App%20E_Landscaping_SCraftonRev_03012011.pdf

Chesapeak Stormwater Network. (2011). *Virginia DCR Stormwater Design Specification No. 3 Grass Channel Version 1.9.* Retrieved from: http:// chesapeakestormwater.net/wp-content/uploads/downloads/2012/02/DCR-BMP-Spec-No-3_GRASS-CHANNELS_Final-Draft_v1-9_03012011.pdf

Chesapeak Stormwater Network. (2013). Virginia DCR Stormwater Design Specification No. 9 Bioretention Version 2.0. Retrieved from: http:// chesapeakestormwater.net/wp-content/uploads/downloads/2014/03/VA_ BMP_Spec_No_9_BIORETENTION_FINAL_Draft_v2-0_06Nov2013.pdf

Chesapeak Stormwater Network. (2011). *Virginia DCR Stormwater Design Specification No. 11 Wet Swale Version 1.9.* Retrieved from: http:// chesapeakestormwater.net/wp-content/uploads/downloads/2012/02/DCR-BMP-Spec-No-11_WET-SWALE-_Final-Draft_v1-9_03012011.pdf

Chesapeak Stormwater Network. (2013). Virginia DEQ Stormwater Design Specification No. 7 Permeable Pavement Version 2.0. Retrieved from: http:// chesapeakestormwater.net/wp-content/uploads/downloads/2014/04/ VA-BMP-Spec-No-7-PERMEABLE-PAVEMENT-FINAL-DRAFT-EDITS-v2-0-02April2014.pdf

Chesapeak Stormwater Network. (2013). *Virginia DEQ Stormwater Design Specification No. 4 Soil Compost Amendment Version 2.0.* Retrieved from: http:// chesapeakestormwater.net/wp-content/uploads/downloads/2014/05/VA_ BMP_Spec_No_4_SOIL_AMENDMENT_FINAL_Draft_v2-0_01012013.pdf

Chesapeak Stormwater Network. (2013). *Virginia Stormwater Design* Specification No. 13 Constructed Wetlands Version 2.0. Retrieved from: http:// chesapeakestormwater.net/wp-content/uploads/downloads/2014/06/VA_ BMP_Spec_No_13_CONSTRUCTED_WETLAND_FINAL_Draft_v2-0_01012013. pdf

Credit Valley Conservation, Emmons & Olivier Resources Inc, Sabourin Kimble & Associates Ltd. (2012). *Low Impact Development Construction Guide Version 1.0.* Credit Valley Conservation Authority. Mississauga, Ontario.

Credit Valley Conservation, Emmons & Olivier Resources Inc, Sabourin Kimble & Associates Ltd. (2014). *Contractor's & Inspector's Guide for Low Impact Development Version 1.0.* Credit Valley Conservation. Mississauga, Ontario

Credit Valley Conservation, Toronto and Region Conservation for The Living City. (2010). *Low Impact Development Stormwater Management Planning and Design Guide Version 1.0.* Credit Valley Conservation Authority & Toronto and Region Conservation Authority. Ontario.

Credit Valley Conservation, Emmons & Olivier Resources Inc, Aquafor Beech (2015). *Draft Low Impact Development Certification Protocols: Bioretention Practices Version 1.0.* Credit Valley Conservation Authority & Toronto and Region Conservation Authority. Ontario.

Dougan and Associates, Credit Valley Conservation. (2010). *Appendix B Landscape Design Guide for Low Impact Development Version 1.0.* Credit Valley Conservation Authority. Mississauga, Ontario.

Erickson, A. J, Weiss, P.T, Gulliver, J.S. (2013). Optimizing Stormwater Treatment Practices A Handbook of Assessment and Maintenance. Springer Science + Business. New York.

Geosyntec Consultants, University of New Hampshire Stormwater Center. (2012). *Final Report on a Cold Climate Permeable Interlocking Concrete Pavement Test Facility at the University of New Hampshire Stormwater Center.* University of New Hampshire Stormwater Center and Geosyntec Consultants. New Hampshire.

Herrera Environmental Consultants Inc, Washington Stormwater Center. (2013). *Guidance Document Western Washington Low Impact Development (LID) Operation and Maintenance (O&M).* Herrera Environmental Consultants Inc and Washington Stormwater Center. Washington.

Horsley Witton Group Inc, University of New Hampshire Stormwater Center, Loon Environmental LLC. (2015). *Rhode Island Stormwater Design and Installation Standards Manual Amended March 2015*. Horsley Witton Group Inc., Sandwich, Massachusetts, University of New Hampshire Stormwater Center, Durham, New Hampshire, Loon Environmental LLC., Riverside, Rhode Island.

Minnesota Pollution Control Agency. (2015). *Minnesota Stormwater Manual*. Retrieved from: http://stormwater.pca.state.mn.us/index.php/Main_Page

Minnesota Pollution Control Agency. (2008). *Stormwater Compliance Assistance Toolkit for Small Construction Operators*. Minnesota Pollution Control Agency. Detroit Lakes. Minnesota.

Minnesota Pollution Control Agency. (2008). *Stormwater Construction Inspection Guide.* Minnesota Pollution Control Agency. Detroit Lakes. Minnesota.

Rhode Island State Conservation Committee, Rhode Island Department of Environmental Management, Rhode Island Coastal Resources Management Council, Rhode Island Department of Transportation, The University of Rhode Island. (2014). *Rhode Island Soil Erosion and Sediment Control Handbook*. Southern Rhode Island Conservation District. Kingstone, Rhode Island. Shaw, D. Rusty, S. (2003). *Plants for Stormwater Design Species Selection for the Upper Midwest.*

Stormwater Maintenance & Consulting, Chesapeake Stormwater Network. (2013). Bioretention Illustrated: A Visual Guide for Constructing, Inspecting, Maintaining and Verifying the Bioretention Practice. Saint Paul, Minnesota.

University of New Hampshire Stormwater Center. (2014). UNHSC Design Specification for Porous Asphalt Pavement and Infiltration Beds. University of New Hampshire Stormwater Center. Durham, New Hampshire.

University of New Hampshire Stormwater Center. (2011). *Regular Inspection and Maintenance Guidance for Bioretention Systems / Tree Filters*. Retrieved from: http://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/UNHSC%20Biofilter%20 Maintenance%20Guidance%20and%20Checklist%201-11_0.pdf

University of New Hampshire Stormwater Center. (2012). *University of New Hampshire Stormwater Center 2012 Biennial Report*. University of New Hampshire Stormwater Center. Durham, New Hampshire.

Virginia Department of Conservation and Recreation. (1999). Virginia Stormwater management Handbook First Edition 1999 Volume 1. Richmond, Virginia.

Virginia Department of Environmental Quality Office of Training Services. Stormwater Management Inspector Course. Retrieved from: http://www.deq.virginia. gov/ConnectWithDEQ/TrainingCertification/InspectorSWMParticipantGuide. aspx

Washington State Department of Ecology Water Quality Program. (2012). Stormwater Management Manual for Western Washington. Washington State Department of Ecology Water Quality Program. Washington.

CREDITS

The University of British Columbia would like to acknowledge the work carried out by the UBCO Leadership Team, Technical Working Group and Urban Systems' consultant team, in the development of the UBC Okanagan Integrated Rainwater Management Plan (IRMP, 2017).

The *IRMP* was developed from 2016-2017 by Urban Systems' interdisciplinary consultant team in collaboration with UBC. It was developed to support the *UBC Okanagan Campus Plan (2015)* and *UBC Okanagan Whole Systems Infrastructure Plan (2016)* by providing an update to the 2011 *Stormwater Master Plan*. The *IRMP* responsibly manages the rainwater that falls on campus in a way that respects natural hydrological processes, protects existing environmental values, and manages risk.

CONSULTANT TEAM

Urban Systems

- * Glen Shkurhan, Senior Engineer and Principal Project Manager
- * Elizabeth Balderston, Landscape Architect
- * Jeff Rice, Water Quality & LID Advisor
- * Glen Zachary, Senior Modeller
- * Scott Shepherd, Life Cycle Costs Specialist
- * Graeme Hayward, Environment & Ecology
- * Margarita Houston, Wetland Specialist
- * Christina Hopkins, Junior Modeller

Piteau Associates

* Remi Allard, Soils & Hydrogeology

LEADERSHIP TEAM

- * Michael White, AVP, Campus & Community Planning
- * Rob Einarson, AVP, Finance and Operations
- * Anthony Haddad, Director, Campus Planning & Development Project Sponsor
- * John Madden, Director, Sustainability & Engineering Project Sponsor
- * Gerry McGeough, Director, Campus Planning & Design
- * Shelley Kayfish, Director, Campus Operations & Risk Management

TECHNICAL WORKING GROUP

- * Doug Doyle, Associate Director, Infrastructure + Service Planning Technical Lead
- * Leanne Bilodeau, Associate Director, Sustainability Operations Project Lead/Manager
- * Roger Bizzotto, Associate Director, Facilities Management
- * Abigail Riley, Associate Director, Campus Planning
- * Anthony Haddad, Director, Campus Planning & Development
- * John Madden, Director, Sustainability & Engineering
- * Marty Gibb, Manager, Operations & Utilities
- * Derek Mahoney, Manager, Landscape and Contract Services
- * Guy Guttman, Manager, Building Operations & Services
- * Dean Gregory, Landscape Architect, Campus Planning & Design
- * Cherie Michels, Advisor, Campus Operations & Risk Management

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

UBC Okanagan Campus Planning and Development, Sustainability Office 1138 Alumni Avenue, Kelowna, BC V1V 1V7 Tel. 250-807-8000 WWW.SUSTAIN.OK.UBC.CA